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ABSTRACT

A new implicit block backward differentiation formula that computes 3-points
simultaneously is derived. The method is of order 5 and solves system of stiff
ordinary differential equations (ODEs). The stability analysis indicates that the
method is A-stable. Numerical results show that the method outperformed some
existing block and non-block methods for solving stiff ODEs.

Keywords: A-Stability, implicit block method, order of a block method, stiff, ordinary

differential equations.

1. INTRODUCTION

In the cause of modeling various physical problems arising in science
and engineering, a special class of ordinary differential equations (ODES)
known as stiff arise. It has the form given by:

y'=f(xy) y@) =Y, x €[a,b] 1)
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A system of stiff ODEs may contain in its solution, components with
slow and rapidly decay rates and this behaviour makes it difficult to solve stiff
problems using explicit numerical methods. There is therefore an increasing
demand in developing implicit numerical methods for such problems. Many
numerical methods have been developed to solve (1) sequentially in Curtiss et
al. (1952), Gear (1971), Cash (1980), Hairer et al. (1993), Lambert (1973),
Roser (1967) and Bohmer et al. (1984).

There are other classes of methods suggested by Hall et al (1976) that
computes a block of approximations simultaneously e.g. Fatunla (1991),
Watanabe (1978), Majid et al (2007), Ibrahim et al (2007), Shampine et al
(1969), Voss et al. (1997), Andria et al. (1973), Musa et al. (2011), Musa et
al. (2012) and Suleiman et al. (2013).

Consider the fixed step 3-point block backward differentiation
formula (BBDF) :

5
Zaj,iym-j—z = h:Bk,i LI k=i=123. (2)
=0

developed in Ibrahim et al. (2007) for the solution of (1).

The formula (2) has the coefficient S _,; =0and is found to be

efficient for solving stiff ODEs. The focus of this paper is to develop a new
implicit block method of the form (2), but with the coefficient 5 ,; # 0 that

will compute 3 solution values simultaneously. The aim is to develop a more
accurate scheme that will solve (1) without altering with the order of (2).
Strategies for improving accuracy, order and efficiency of multistep methods
have been suggested by Hairer et al. (1993) and include adding future point,
off-step point and using higher derivatives. Our method will have the form:

5
zajviynﬂ?Z =hBi (fou =P ) k=i=123. (3)
j=0

where p is a free parameter to be chosen from the interval (—1,1) and

Bi =pPPBi- This paper uses the value p =% and has found an A-stable

method.
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The remaining sections of the paper will present the derivation of the method
and its order, the stability analysis, the implementation of the method, test
problems used and numerical results. Finally, a conclusion is given.

2. DERIVATION

This section describes the derivation of the fixed step 3—point block
method. Given 3 back values X, ,, X, and X , we shall develop a formula

that will compute 3 solution values; namely y, .., Y,,, and y, . at the points

X1 X, @nd X, respectively. The procedure will involve Taylor series

expansion of the linear operator
L [y(xn)' h] =0 Y(X, —2h) + ;Y (X, —h) +a,, y(X,) + ag; Y (X, +h)
+a,,;Y(X, +2h) + a5, y(X, +3h) (4)
—hp; (f(x,+kh)=pf(x,+(k=Dh))=0

where k=i=12,3.

When k =i =1, the formula obtained corresponds to the first point,
k =i =2 corresponds to the second point and k =i =3 corresponds to the
third point. Expanding (4) using Taylor's series gives a set of equations to be
solved simultaneously. For the first point, the coefficient ¢, is normalized

to 1; for the second point, «, , is normalized and for the third point, o, is

normalized.  Substituting pzé, the following implicit 3-point block

formula is obtained:
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7 15 2
Yo = _E Yoot 3yn—l - 5yn + I Yo — g yn+3 + 3hfn - 6hfn+1
— _3 + E — g + § — ﬂ _ § hf
yn+2 - 25 yn—2 20 yn—l 5 yn 5 yn+1 100 yn+3 5 n+l
; g hf 5)
, 2, 8 20 %0 5 30
™o262°"7 131°" 131°" 1317 2627°™* 131 "
+ 80 hf..,
131

The error constant for the formula (5) is:

131

indicating that the method is of order 5.

3. STABILITY ANALYSIS

This section presents the stability analysis of the method (5). The
method developed will be examined by applying the test differential equation:

y'=2y (6)
where A is complex constant with Re(1)<0.

Rewriting the formula (5) in matrix form gives:
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100
yn+1 2 11 9 yn—2 13 27 yn+l
010 Yo |Z| "5 54 s Yo | T = 0 || Yns2
00 1 25 20 5 5 100
heof |21 85 230N/ 360 665 L
262 131 131 131 262
0 0 3 fn—2 _2 2 0 fn+1
+h{0 0 O fml4¢1—g 5 0 || f..
0 0 O\ f, . 30 60 f.s
131 131
N ()
and equation (7) is equivalent to:
0 0 3)f
13 27 yn+1 2 11 9 yn—2 n-2
B 1 — | Y2 |Z| =52 SR -c Yna +h|0 0 O 1:n—l
5 100 25 20 5 00 ol ¢
30 665  [Jme) | 27 85 2300 "
131 262 262 131 131
_6 0 0 fn+1
+h 38 0 | f,.,
5 5 ;
(30 60 e
131 131
(8)
Equation (8) can be represented in the following form:
Ao :AiYm—l+h(BOFm—l+BlFm) )

where
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yn+l
13 27
=| —— 1 — | Y = y
A) 5 100 m yn+2
30 665 s
131 262
R
yn—2
2 11 9
=| —— E— —_—— y Y = ,
Ai 25 20 5 m-1 yn—l
27 -85 230 g
262 131 131
0 0 3 -
B,=|0 0 0], Foi=| fia |,
000 N
s oo
Blz _g g 0 J I:m+1: fn+2 :
30 &0 e
131 131
Applying (6) into (9) and letting h=h , We have:
(A —hB,)Y, =(A+hB,)=0 (10)

To find the stability polynomial, the following equation is evaluated:

det(t(Ab—ﬁBl)—(Ai +HBO))=0 (11)

to obtain the stability polynomial:
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53  15h 7881t 4077ht 558 t | 14109¢°
1310 1048 5240 2620 665 1310
L 503730 10737h't’ 54h't" 48767t 204091t°
5240 1310 131 5240 1310
7038h°t* 4320t°
" ess 131

R(t,h) =

(12)

0

To show that the method is zero stable, we set h=0 in (12) to obtain
the following first characteristic polynomial:

53 7881t 14100t° 48767t

- + (13)
1310 5240 1310 5240

Solving equation (13) for t, we have:
t=1, t=0.0357884, 1=0.12147
Thus by the definition of zero stability, the method (5) is zero stable.

The plot of the stability region is given below and it shows that the method is
A —stable.

5 Stable
Stable
&
27 Unstable
,I_; ,Ig 2 E‘t g
Unstable
Stable
1 Stable

1
Figure 1: Stability region of the 3-point when p = E .
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4. IMPLEMENTATION OF THE METHOD
Newton's iteration is employed to implement the method. We

. . . 1 .
consider the implementation when p = 5 and the same applies for any value

of (—1,1). The iteration is described below.

Let y, and y(x;) be the approximate and exact solutions of (1)
respectively. The absolute error is defined by

(error; ), =[(y;), = (Y(%))| (14)
The maximum error is given by:

MAXE = max (max (error,),) (15)

I<i<T  1<i<N

where T is the total number of steps and N is the number of equations.

Let y'? denote the (i +1)" iterate and
(i+1) _ ,(i+]) 0] P —
en+jl - yn+jJ - yn+j J _1’ 2'3 (16)
Let
15 2
Fl =Y~ Z Y2 t g Yoz — 3hfn + 6hfn+1 - §1
13 27 3 6
F=y ,-—y +2°y +2hf —2hf - 17
2 yn+2 5 yn+1 100 yn+3 5 n+1l 5 n+2 §2 ( )
360 665 30 60
Foy oy 22y o P pf
3 yn+3 131 yn+1 262 yn+2 131 n+2 131 n+3 §3
where
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7
51 = (_% Yoo t 3yn—l - 5ynj

o
2 25 yn 2 20 yn—l 5 yn

27 85 230
& :(

262702 13170 T 131

Then the iteration takes the form:

=

P =y -[F ()[R )] i=123

which can be written as

LR () Jesy ==L R (v2) ],

j=123.

Equation (20) is equivalent to the following matrix form:

(i+1) (i) (i) 0]
en+1 yn+l f f

J| e [=B| vy, [+Chl 1)

©1+Dn| £
) L) L) L
where
14+6h ot b
é‘yn+1 4
J: _5 §h5fn+1 _§h5fn+2
5 5 5yn+1 5 5yn+2
360 66530 5,
131 262 131 5yn+2
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(19)
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(21)
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LB 2
13 ) 257 003
B: E —1 —m y C= 0 0 O y
360 665 000
131 262
—6 0 0
3 6 S
D=|-= 2 0| E=|¢|
c T &
BEC 5
131 131

Equation (21) is solved for ('3 1,2 s -

5. TEST PROBLEMS

The following problems are used to test the performance of the
method developed.

Example (1)

y'=5¢"(y-x)"+1, y(0)=-1, 0<x<1
Exact solution

y(x) =x—e™

Source: Lee et al. (2002).

Example (2)

y, =-20y,-19y,  y,(0)=2

. , , 0<x<20
y, =-19y, -20y,  ¥,(0)=0
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Exact solution
yl(x) — e—39x + e—x
X

V() =e " —e
Source: Cheney et al. (2012).

Example (3)

y, =198y, +199y, y,(0)=1

, , , 0<x<10
y, =—398y, —399y, = ¥,(0)=-1

Exact solution
y(x)=¢
Y,(x)=—e~

Eigen values: -1 and -200
Source: lbrahim et al. (2007).

6. NUMERICAL RESULTS

The problems given in the previous section are solved using the
method developed, the 1-point non-block BDF and the 3-point BBDF with
different step sizes h. The maximum error and the computation time for each
problem are given in the tables below.

The following notations are used in the Tables.

h = Step size;

1BDF = 1-point BDF method;

3BBDF = 3—point BBDF method;

3NBBDF = 3—point fifth order new BBDF method,;
NS = Total number of integration steps;

MAXE = Maximum Error;

Time = Computation time.
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TABLE 1: Numerical results for problem (1)
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h Method NS MAXE Time
102 1BDF 100 1.16701e-002 3.25750e-004
3BBDF 33 2.80735e-002 2.76333e-004
3NBBDF 33 3.51456e-003 5.52416e-004
10% 1BDF 1,000 1.24337e-003 1.86442e-003
3BBDF 333 3.71852e-003 1.81850e-003
3NBBDF 333 4.90191e-005 4.50367e-003
10 1BDF 10,000 1.24935e-004 1.71149e-002
3BBDF 3,333 3.74700e-004 1.71443e-002
3NBBDF 3,333 5.20417e-007 4.36918e-002
10° 1BDF 100,000 1.24994e-005 1.68071e-001
3BBDF 33,333 3.74970e-005 1.70042e-001
3NBBDF 33,333 5.25030e-009 4.34808e-001
10° 1BDF 1,000,000 1.25000e-006 1.68182e+000
3BBDF 333,333 3.74997e-006 1.70308e+000
3NBBDF 333,333 5.25648e-011 4.35791e+000
TABLE 2: Numerical results for problem (2)
H Method NS MAXE Time
107 1BDF 2000 6.85453e-002 7.22775e-003
3BBDF 666 6.23032e-002 2.77590e-002
3NBBDF 666 6.98707e-002 2.63337e-002
10° 1BDF 20,000 1.35548e-002 7.10778e-002
3BBDF 6,666 3.76165e-002 7.66636e-002
3NBBDF 6,666 5.40956e-003 2.60816e-001
10 1BDF 200,000 1.42927e-003 6.96867e-001
3BBDF 66,666 4.26516e-003 7.64385e-001
3NBBDF 66,666 3.08942e-005 2.60725e+000
10° 1BDF 2,000,000 1.43644e-004 7.703079e+000
3BBDF 666,666 4.30707e-004 7.63788e+000
3NBBDF 666,666 3.18534e-007 2.60597e+001
10° 1BDF 20,000,000 1.43715e-005 6.95855e+001
3BBDF 6,666,666 4.31123e-005 7.65356e+001
3NBBDF 6,666,666 3.19872e-009 2.60700e+002
Table 3: Numerical results for problem (3)
h Method NS MAXE Time
10° 1BDF 1,000 3.61405e-003 2.44375e-003
3BBDF 333 1.07308e-002 2.81400e-003
3NBBDF 333 1.94447e-004 1.20394e-002
103 1BDF 10,000 3.67235e-004 2.35480e-002
3BBDF 3,333 1.10060e-003 5.26718e-001
3NBBDF 3,333 2.07993e-006 1.19193e-001
10* 1BDF 100,000 3.67815e-005 2.31844e-001
3BBDF 33,333 1.10333e-004 2.71459e-001
3NBBDF 33,333 2.09995e-008 1.19296e+000
10° 1BDF 1,000,000 3.67873e-006 2.60215e+000
3BBDF 333,333 1.10361e-005 2.70685e+000
3NBBDF 333,333 2.10257e-010 1.19173e+001
10° 1BDF 10,000,000 3.67839e-007 2.31472e+001
3BBDF 3,333,333 1.10363e-006 2.71178e+001
3NBBDF 3,333,333 1.41029e-011 1.19110e+002
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From the tables above, the accuracy of the new method developed
can be clearly seen from the maximum error (MAXE). For all the problems
tested, the method is seen to have outperformed the 1BDF and the 3BBDF
methods. As an added advantage, our method also reduced the number of

steps taken to complete the integration by the 1BDF method to almost%.

However, the computation time of our method is not better than that in the
1BDF and the 3BBDF.

7. CONCLUSION

An implicit method is developed that is suitable for solving stiff
ODEs. The method produces 3-solution values simultaneously. The order of
the method is 5 and the error constant is seen to be small. A comparison is
made with other classes of methods in the BDF family and the accuracy of
the method is seen to be better.
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